Algorithms for Natural Language Processing

Lecture 12:
Context-Free Recognition

Levels of Linguistic Representation

> speech
text

Context-Free Grammars

- Using grammars

Recognition Parsing
-Parsing algorithms
Top down Bottom up
-CNF
-CKY Algorithm
-Cocke-Younger-Kasami

Parsing vs Word Matching

-Consider
-The student who was taught by David won the prize
-Who won the prize?

- String matching
"David won the prize."
-Parsing based
-((The student (who was taught by David)) won the prize)
-"The student won the prize"

Context-Free Grammars

- Vocabulary of terminal symbols, Σ
- Set of nonterminal symbols (a.k.a. variables), N
- Special start symbol $S \in N$
- Production rules of the form $X \rightarrow \alpha$
where

$$
\begin{aligned}
& X \in N \\
& \alpha \in(N \cup \Sigma)^{*}
\end{aligned}
$$

Two Related Problems

-Input: sentence $\boldsymbol{w}=(w 1, \ldots, w n)$ and CFG G
-Output (recognition): true iff $\boldsymbol{w} \in$ Language (G)

- Output (parsing): one or more derivations for \boldsymbol{w}, under G

Parsing as Search

Implementing Recognizers as Search

Agenda $=\{$ state 0$\}$
while(Agenda not empty)
$s=$ pop a state from Agenda
if s is a success-state return $s / /$ valid parse tree
else if s is not a failure-state:
generate new states from s push new states onto Agenda
return nil // no parse!

Example Grammar and Lexicon

Grammar	Lexicon
$S \rightarrow N P V P$	Det \rightarrow that \mid this \mid a
$S \rightarrow$ Aux NP VP	Noun \rightarrow book \mid flight \mid meal \mid money
$S \rightarrow V P$	Verb \rightarrow book \mid include \mid prefer
$N P \rightarrow$ Pronoun	Pronoun $\rightarrow I \mid$ she \mid me
$N P \rightarrow$ Proper-Noun	Proper-Noun \rightarrow Houston \mid NWA
$N P \rightarrow$ Det Nominal	Aux \rightarrow does
Nominal \rightarrow Noun	Preposition \rightarrow from \mid to \mid on \mid near \mid through
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb NP	
$V P \rightarrow$ Verb NP PP	
$V P \rightarrow$ Verb PP	
$V P \rightarrow V P P P$	
$P P \rightarrow$ Preposition NP	

Figure 13.1 The \mathscr{L}_{1} miniature English grammar and lexicon.

Recursive Descent (A Top-Down Parser)

Start state: (S, O) Scan: From ($w j+1 \beta, j$), you can get to ($\beta, j+1$). Predict: If $Z \rightarrow \gamma$, then from $(Z \beta, j)$, you can get to ($\nu \beta, j$).
Final state: (ε, n)

Example Grammar and Lexicon

Grammar	Lexicon
$S \rightarrow N P V P$	Det \rightarrow that \mid this \mid a
$S \rightarrow$ Aux NP VP	Noun \rightarrow book \mid flight \mid meal \mid money
$S \rightarrow V P$	Verb \rightarrow book \mid include \mid prefer
$N P \rightarrow$ Pronoun	Pronoun $\rightarrow I \mid$ she \mid me
$N P \rightarrow$ Proper-Noun	Proper-Noun \rightarrow Houston \mid NWA
$N P \rightarrow$ Det Nominal	Aux \rightarrow does
Nominal \rightarrow Noun	Preposition \rightarrow from \mid to \mid on \mid near \mid through
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb NP	
$V P \rightarrow$ Verb NP PP	
$V P \rightarrow$ Verb PP	
$V P \rightarrow V P P P$	
$P P \rightarrow$ Preposition NP	

Figure 13.1 The \mathscr{L}_{1} miniature English grammar and lexicon.

Shift-Reduce (A Bottom-Up Parser)

-Start state: $(\varepsilon, 0)$
-Shift: From (α, j), you can get to (α wj+1, $j+1$). -Reduce: If $Z \rightarrow \gamma$, then from ($\alpha \gamma, j$) you can get to ($\alpha \mathrm{Z}, j$).
-Final state: (S, n)

Simple Grammar

-S -> NP VP
-VP -> V NP
-NP -> John
-NP -> Delta
-V -> flies

Context-Free Grammars in Chomsky Normal Form

- Vocabulary of terminal symbols, Σ
- Set of nonterminal symbols (a.k.a. variables), N
- Special start symbol $S \in N$
-Production rules of the form $X \rightarrow \alpha$
where

$$
\begin{aligned}
& X \in N \\
& \alpha \in N, N \cup \Sigma
\end{aligned}
$$

Convert CFGs to CNF

- For each rule $X \rightarrow$ ABC
-Rewrite as
$X \rightarrow$ A X2
$X 2 \rightarrow B C$
-Introducing a new non-terminal

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF
$S \rightarrow N P V P$	$S \rightarrow N P V P$
$S \rightarrow A u x N P V P$	$S \rightarrow X 1 V P$
	X1 \rightarrow Aux NP
$S \rightarrow V P$	$S \rightarrow$ book \mid include \mid prefer
	$S \rightarrow \operatorname{Verb~NP}$
	$S \rightarrow X 2 P P$
	$S \rightarrow$ Verb PP
	$S \rightarrow V P P P$
$N P \rightarrow$ Pronoun	$N P \rightarrow I \mid$ she \mid me
$N P \rightarrow$ Proper-Noun	$N P \rightarrow$ TWA \mid Houston
$N P \rightarrow$ Det Nominal	$N P \rightarrow$ Det Nominal
Nominal \rightarrow Noun	Nominal \rightarrow book \mid flight \mid meal \mid money
Nominal \rightarrow Nominal Noun	Nominal \rightarrow Nominal Noun
Nominal \rightarrow Nominal PP	Nominal \rightarrow Nominal PP
$V P \rightarrow V e r b$	$V P \rightarrow$ book \mid include \mid prefer
$V P \rightarrow$ Verb NP	$V P \rightarrow \operatorname{Verb} N P$
$V P \rightarrow \operatorname{Verb} N P$ PP	$V P \rightarrow X 2 P P$
	X2 \rightarrow Verb $N P$
$V P \rightarrow V$ erb $P P$	$V P \rightarrow V e r b P P$
$V P \rightarrow V P P P$	$V P \rightarrow V P P P$
$P P \rightarrow$ Preposition NP	PP \rightarrow Preposition NP

Figure 13.8 \mathscr{L}_{1} Grammar and its conversion to CNF. Note that although they aren't shown here all the original lexical entries from \mathscr{L}_{1} carry over unchanged as well.

CKY Algorithm

```
for \(i=1\)... \(n\)
\(C[i-1, i]=\{\vee \mid \vee \rightarrow w i\}\)
for \(\ell=2 \ldots n / /\) width
    for \(i=0 \ldots n-\ell / /\) left boundary
    \(k=i+\ell / /\) right boundary
        for \(j=i+1 \ldots k-1 / /\) midpoint
        \(C[i, k]=C[i, k] \cup\)
    \(\{V \mid \vee \rightarrow Y Z, Y \in C[i, j], Z \in C[j, k]\}\)
return true if \(S \in C[0, n]\)
```


CKY Algorithm: Chart

book					
	this				
		flight			
			through		
				Houston	

CKY Algorithm: Chart

	Noun				
book					
	this				
		flight			
			through		
				Houston	

CKY Algorithm: Chart

	Noun, Verb				
book					
	this				
		flight			
			through		
				Houston	

CKY Algorithm: Chart

	Noun, Verb				
book		Det			
	this		Noun		
		flight		Prep	
			through		PNoun
				Houston	

CKY Algorithm: Chart

	Noun, Verb				
book		Det			
	this		Noun		
		flight		Prep	
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det			
	this		Noun		
		flight		Prep	
			through		PNoun NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP		
	this		Noun		
		flight		Prep	
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP		
	this		Noun		
		flight		Prep	
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP		
	this		Noun	-	
		flight		Prep	
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP	-	
	this		Noun	-	
		flight		Prep	
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP	-	
	this		Noun	-	
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP	-	
	this		Noun	-	-
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-			
book		Det	NP	-	NP
	this		Noun	-	-
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-	VP		
book		Det	NP	-	NP
	this		Noun	-	-
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-	VP,S		
book		Det	NP	-	NP
	this		Noun	-	-
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-	VP,S	-	
book		Det	NP	-	NP
	this		Noun	-	-
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm: Chart

	Noun, Verb	-	VP,S	-	S
book		Det	NP	-	NP
	this		Noun	-	-
		flight		Prep	PP
			through		PNoun, NP
				Houston	

CKY Algorithm

```
for \(i=1\)... \(n\)
\(C[i-1, i]=\{\vee \mid \vee \rightarrow w i\}\)
for \(\ell=2 \ldots n / /\) width
    for \(i=0 \ldots n-\ell / /\) left boundary
    \(k=i+\ell / /\) right boundary
        for \(j=i+1 \ldots k-1 / /\) midpoint
        \(C[i, k]=C[i, k] \cup\)
    \(\{V \mid \vee \rightarrow Y Z, Y \in C[i, j], Z \in C[j, k]\}\)
return true if \(S \in C[0, n]\)
```


CKY Equations

$C\left[i-1, i, w_{i}\right]=\operatorname{TRUE}$
$C[i-1, i, V]= \begin{cases}\text { TRUE } & \text { if } V \rightarrow w_{i} \\ \text { FALSE } & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& C[i, j, V]= \begin{cases}\text { TRUE } & \text { if } \exists j, Y, Z \text { such that } \\
& V \rightarrow Y Z \\
& \text { and } C[i, k, Y] \\
& \text { and } C[k, j, Z] \\
\text { and } i<k<j \\
\text { FALSE } & \text { otherwise }\end{cases} \\
& \text { goal }=C[0, n, S]
\end{aligned}
$$

CKY Complexity

-CKY worst case is $\mathrm{O}\left(\mathrm{n}^{\wedge} 3 . \mathrm{G}\right)$

- Best is worst case
-(Others better in average case)

CFG Grammars

- Parsing and Recognition
- Bottom up and Top down
-CKY (for CNF)

